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.1. INTRODUCTION

Because of their relevance to the aerodynamics of vertical-takeoff-and-

landing aircraft in ground effect, considerable research has recently been

devoted to isolated and interacting impinging jets. Figure 1 illustrates

these configurations schematically in planar view. For the case of a single

jet, Figure l(a), there are four simultaneous flow regimes of differing

character: the transition region in which the Jet velocity profile changes

from a uniform to a fully developed distribution; the fully developed region;

the impingement region in which the fluid is deflected by the ground plane;

and the wall-jet region in which the flow spreads radially from the stagnation

point. For the case of two interacting jets, Figure 1(b), these four regimes

exist for each of the impinging jets, and, in addition, a fountain region is

formed through the collision of the opposing wall jets.

Although the flow patterns illustrated in Figure 1 appear simple, they

are nevertheless difficult to compute because they are characterized by

significant turbulence levels, strong pressure gradients, and an elliptic

character which precludes analysis by parabolic marching schemes. The ground-

plane pressure distribution in the impingement zone, which is governed by the

dynamics of the flow, can be predicted adequately by inviscid analytical

methods, but calculation of entrainment effects and velocity profiles in the

wall jet and fountain necessitates the inclusion of turbulence.

For isolated impinging jets, both two- and three-dimensional, Rubel has

solved the conservation equations for inviscid flow in finite-difference form,

References I and 2. These analyses provided good agreement between measured

and computed ground-plane pressure distributions for both normal and oblique

impingement. For two-dimensional (planar) impinging jets, Agarwal and Bower,

Reference 3, included viscous effects by solving the time-averaged Navier-

Stokes equations for both incompressible and compressible flow and using the

two-equation Jones-Launder model to obtain closure. This work yielded good

agreement with pressure and velocity data and provided information on the

variation of turbulence length scale with Reynolds number.

For two interacting, impinging jets with fountain formation, most tech-

niques developed to predict these flows use the so-called "modular analyses,"

7 L
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such as those described by Kotansky et al., Reference 4, and Siclari et al.,

Reference 5. With this approach, the various regions of the flowfield, such

as the free jets and the wall jet, are modeled using a separate system of

equations for each zone, which are generally based on integral conservation-

law constraints. The computed properties are then iteratively pieced together

to provide the quantities of interest. This method works well for reiatively

wide jet spacing (S/D > 6) where the fountain properties are dependent pri-

marily on the properties of the approaching wall jets. However, as S/D is

reduced below 6, there is a strong interaction between the impinging jets and

the fountain, as established in the flow visualization work of Saripalli,

Reference 6. The coupling between the primary jets and the fountain invali-

dates any prediction model that computes the upwash based only on the wall-jet

properties. Siclari et al., Reference 7, have formulated a "modular analysis"

for closely spaced jets, but this scheme is restricted by the need for numer-

ous empirical constants which are configuration-dependent.

A more general approach for computing dual-jet impingement flows is the

solution of the time-averaged Navier-Stokes equations in three dimensions.

This problem is considerably more complex than the planar impinging-jet

problem for the following two reasons:

(1) Computer storage limitations restrict the number of finite-difference

grid points available, which limits the maximum Reynolds number for

which convergent or accurate solutions can be obtained.

(2) Even with coarse grids, the computer time necessary to achieve a

three-dimensional solution is at least an order of magnitude greater

than the time necessary to compute a two-dimensional solution, which

translates directly into cost considerations.

Initial work at MDRL on solution of the three-dimensional, time-averaged,

Navier-Stokes equations was based on writing the conservation equations in

terms of scalar and vector potential functions and vorticity, using the one-

equation Glushko model to represent the turbulence, applying experimentally

determined boundary conditions in the near field, and solving the transport

equations using Hoffman's augmented-central-difference algorithm (Reference

8). With this approach, flowfields were computed for equal- and unequal-

strength jets with normal and oblique impingement, and representative results

given in the form of particle pathline traces are illustrated in Figure 2.

[.i- '?j .. ii "~ iiiiii i i3
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-" Shortcomings of this formulation are the need to specify in the Glushko

4| model the length-scale distribution of the turbulence, which is a complex

variation for jet-impingement flows, and the need to establish the boundary

" conditions in the near field, which generally must be evaluated from experi-

mental results. To overcome these limitations, the following are the specific

objectives of the current work on solution of the time-averaged Navier-Stokes

equations for three-dimensional turbulent impinging-jet flows:

*q 4



(1) Utilize the Jones-Launder, two-equation turbulence model, thereby

eliminating the need to specify the length-scale distribution.

(2) Utilize coordinate transformations which permit imposing the boundary

conditions in the far field where relatively simple constraints can be

placed on the flow variables, thereby eliminating the need to intro-

duce empirically based boundary conditions in the near field.

(3) Solve the governing equations directly for the velocity and vorticity,

thereby eliminating the need for scalar and vector potential functions

which require additional computer storage.

(4) Discretize the transport-type equations using a third-order-accurate

upwind-difference scheme which is more efficient than the augmented

central-difference algorithm.

This report describes the governing equations, the numerical solution

technique, and computed jet-impingemc't flowfields. The latter include iso-

lated jets with both normal and oblique impingement and interacting equal- and

unequal-strength jets with fountain formation.

[5



2. THE FLOWFIELD MODEL

This section presents the governing equations used to describe the turbu-

lent, incompressible, steady flow of the three-dimensional impinging-jet con-

figurations. The complete time-averaged Navier-Stokes equations and Jones-

Launder turbulence model equations are given first in terms of the velocity

components and pressure, and then they are rewritten in terms of velocity and

*vorticity. Coordinate transformations are applied to the equations, and the

types of boundary conditions imposed in the analysis are defined.

2.1 Governing Equations

Considering a space-fixed reference through which the fluid moves, the

. time-averaged continuity and momentum (Navier-Stokes) equations for steady

*- incompressible flow are given below in tensor notation.

Conservation of mass:

au.
-- 1. 0 (1)
ax.

Conservation of momentum in the ith direction:

.P + _ _ (T aU - 0 (2)

ax. axi ax (j

The conventional notation is used in which p is the density, ui the velocity

component in the ith direction, p the static pressure, and T the shear

stress in the ith direction on a surface normal to the jth direction.

The previous equations were derived using Reynolds decomposition in which

a general flow variable * is expressed as the sum of a time-averaged compo-

nent j and a fluctuating component '+ '. The result is a system of

time-averaged conservation equations which have the same form as the instan-

taneous conservation equations with the exception of the Reynolds stress

" term - pui u

In order to obtain a closed system of equations, the Reynolds stress term

must be related to the time-averaged quantities that describe the mean flow.

?6
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The present work uses the high-Reynolds-number form of the two-equation Jones-

Launder (k-s) turbulence model, Reference 9. With this approach, the effec-

tive shear-stress term in Equation (2) is represented by

.2

Tjj - Pufuj" " 'eff (i+ -- - jk (3)

where peff is the effective viscosity (the sum of the molecular and turbulent

components, Ueff P + Ut) and k is the turbulent kinetic energy. In the

high-Reynolds-number form of the Jones-Launder turbulence model, P is related

to the turbulent kinetic energy k and its kinematic rate of dissipation £ by

c pk
2

t 4

where c is a constant with a value of 0.09. In this turbulence model, k

and c are computed from the transport equations given below in tensor

notation.

Transport equation for turbulent kinetic energy:

- ak a / k (a3ui + l Bi

Transport equation for turbulent dissipation:

I C+CI ; ( 3;1 'uj\ 3 21 PC 22 (6)PUjj (% i-FC 13 +Lj3 k(6
j a Jf axj( j x -x iJ ax1

In Equations (5) and (6) the diffusion coefficients Uk and UC are defined by

k U + XkUt (7)

and

CI t  (8)

7
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The constants appearing in the turbulence-model transport equations have the

following values: C1 - 1.44, C2 = 1.92, Xk = 1.0, and X = 0.9091.

Although the governing equations are written in velocity-pressure form,

they are solved in velocity-vorticity form to simplify the solution procedure

by eliminating the pressure gradient from the momentum equations. The

* vorticity is defined in tensor notation by

au 
ki k x(9)

1 ijk ax.'

where e ijk is the alternating tensor. Taking the curl of Equation (2) and

utilizing Equation (9) results in a transport equation for the vorticity. A

Poisson equation for the velocity field is derived by combining the relation

for the conservation of mass, Equation (1), with Equation (9).

Completing the steps outlined in the previous paragraph, introducing a

characteristic length D and characteristic velocity Vo to normalize the

equations, and expanding the equations in cartesian coordinates (xy,z) with

velocity components (u,v,w) and vorticity components (S ,fla ) results in the

system of dimensionless equations given below.

Poisson equation for u:

Sv + a2v + a2v u z (10)
2 2 7-2 5z ayax ay az

, Poisson equation for v:

2 v a 2 v 2 v ax a nz

.- + - + - (11
ax 2 y2 az2

Poisson equation for w:

2 2 2 ain an12

2 + 2 2 ay _ ax (2
ax ay 3z2 i



Transport equation for Qx

(1+R)+ +- +R++++ 2-u+
( I+ej (ax2+ a 2  az2 /x)) ax

+ Re .~A 2k! an

+ a! -+Re 't  W Jx

a au u u +

Re l-nx - Lny - n ax x

Pt z li2t (aw + _2u
aat n+ . a

ay ax az ax axay ax

2 2

a ut a (aw +av
( t - Oi - y +) ay2 +ay az-

2 a
+u -V+ Re 

(13)

a ay ay (z

Transport equation for 0y
/2 2 2

Re li+I l +R at U)

a aeax ay 2ax a

" t () 2 2 + 2 e (2 a Ia

+ay a y az az

Re 2-VO a av n +a"I an x

a a v a t w a a
allan p 3 a 2 1 t (I -+ I

"ay tay y+az tay Z+axay ay az /
2 2alit lit law au'

ayaz - a-x2  a z.

a 2 2

t \a ax1

- Xa Tz-) ;Z-29

ax 
i~ WW.



Transport equation for Q

1 R 1 + + e 2 ) o/ 2 2 a2  ax ax~

- R -- -a x  -- Dy - -a z x z
an an an)

ax z B z z x +

2
11u an av ai ax -u

- x 3 a 2 1 2-

2 22

aa l nv u aw["ax ay ayz a3., 3y 
t 0z +x

22 2

ai l

: Transport equation for k:

(I- t a a2\+ ak + Re u t

2 t 72 2 kxa

a(t 3u) 3v 3u 3 w

ay x a y 3z

/2 2 2 ak
Rek4 L3k Re AXk atw)

2.k + L + az2 + + /+
+ (a [+ a\ aw+ !w +(3uav\ aw+ 1-w !w- (16

ax iiy x ayy \ZTaz a3z

110
!10
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1*l'.. -

Transport equation for e:

+Re p __ + R + Re - - U)

4-R ax2 a z xa

(ARetv) - e(Ca"tz ) r

2SRek C~ - Re Ctt C 2P u3 x+ 3 v 3

k k axax (aY ax) ay

+ 2- +-L -+ (V + . 1Y+ 2 Y av
\3z ax, az ax yax ay ay

av~aw\ a 4v jaw4-  u\ w-  (aw av)u
+ 1V-+ .L -v -+ 1W_+H . A+ 1W +H a

az ay) az 1ax az Jax ay z ay

+ 2 av aw (17)
3z azJ

The only dimensionless parameter that enters the system of equations is

the Reynolds number, Re - V D/v. The location in the flowfield where V0 and D

are chosen will be defined subsequently with reference to the specific

impinging-jet configurations.

2.2 Coordinate Transformations

In the present analysis, a transformation is used in each of the three

coordinate directions. This approach permits mapping a relatively restricted

computational domain into a larger physical domain and distributing points in

the finite-difference solution of the equations in regions of the flowfield

where property gradients are the largest.

The transformed coordinates are denoted by an overbar: x =

y l y(y), and z ! (z). It follows that the required derivatives of a general

flow variable * with respect to the physical coordinates are related to the
derivatives with respect to the transformed coordinates by the expressions

given below.

II
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dx D# +(18)
ax dx

ax4

__, ay dy (19
2 2 2 2

ax ay dy ax
dy a (22)

ay dz ay

a2 1dz y2 2 23

2 d A + d2, 3# (23)
2 z 2 2 dz2

The Poisson equations for the velocity components, Equations (10) through

(12), can be written in the following general form in terms of the physical

coordinates:

2 2 2(24)
ax2  ay2  az2  *

i where * = u, v, or w and a denotes the corresponding source term. In terms

of the transformed coordinates, Equation (24) assumes the following form:

2t aI  + + a + 2 + + 2 (25)
-a2 2 a; - 2 a 2 1 2

where

d- 2- 2-
dx d y dz d2z

dX , 2x 1 dy 2i2 0 ¥Ind j'and 2 - .
I dx -2 2 1 dy dx2 dy2  1 dz2

The overbar on the source term a denotes that the derivatives it contains

": have been rewritten in terms of zhe transformed coordinates according to

Equations (18) through (23).

12
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Similarly, the transport equations for the vorticity components and the

turbulence quantities, Equations (13) through (17), can be written in terms of

the physical coordinates in the following general form:

+ ! ( . + 2!1' +8 ~+y Y~ + at 0  (26)Sx 2  2y 2 ax ay az
a~x ay az /a a a

where n y , 0 , k, or E. The corresponding coefficients in the respec-

tive equations are denoted by ap B , @, and 6, and the source term is

denoted by a When Equation (26) is written in terms of the transformed

coordinates, the following equation results:

* 2 *12 ~* 2
1 a _ 2 1 az2 (9 2 1 a

+ (02 + Y 8 -+ 2 + ) YI  (27)

where a I 2, 01P 02, y,, and Y2 maintain the same definitions introduced with

reference to Equation (25).

The analytic functions used to define the coordinate transformation

derivatives are different for the various impinging-Jet configurations con-

sidered and are defined in a subsequent section.

2.3 Boundary Conditions

In the system of equations presented in Section 2.1, the eight elliptic

partial-differential equations must be solved for the following eight flow

properties: u, v, w, SIX Iy' az, k, and e. The manner in which the boundary

conditions are imposed on these equations depends on the nature of the

boundary plane in the physical domain where the impinging-jet flowfield is

solved.

Consider first the inflow plane where one or two jets enter the solution

domain a distance y = I above the ground. The velocity and turbulence

property profiles throughout the entering jets are assumed to be known:

13
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u - u(x, h, z), v = v(x, h, z), w = w(x, h, z), k = k(x, i, z),

and c - c(x, h, z). (28)

r* The profiles of the vorticity components through the entering jet follow from

the specified velocity distributions and the defining equations for the

*" vorticity components,

S2 M aw _v (29)
x ay az

Q =au aw (30)
y az ax

na v au (31)z ax ay

On a solid surface (either the impingement plane or the blocking plate

through which the jet discharges), the velocity and turbulent-kinetic-energy

* boundary values follow from the no-slip, impermeable-wall condition,

u - v = w = k = 0. (32)

The turbulent dissipation is specified by taking the limiting form of Equation

(16) at the wall,

C W= (33)
Re an2

where n denotes the coordinate normal to the surface. The vorticity profiles

follow from Equations (29) through (31).

On an outflow plane where the wall jet exits the solution domain, it is

assumed that there are no gradients with respect to the coordinate normal to

the outflow surface. (The outflow planes are taken sufficiently far from the

impinging jet centerline such that this assumption is valid.)

au ' av w anX = an Y = az . ak ._ . (34)
an an 3n an an 3n an an (

Finally, the remaining boundary surface to consider is a symmetry plane

passing through the impinging jet or fountain. On this plane the normal

14



velocity component vanishes, and the derivatives of the other velocity

components with respect to the normal coordinate are zero.

u M o, 'i -0. (35)

i*n

* The normal gradients of the turbulence quantities vanish on the symmetry

plane,

_k . _ . 0 (36)

an an

and the vorticity values follow from their defining equations.

Specific solution domains for the impinging-jet geometries and the cor-

responding boundary conditions are presented in Section 4.

15
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3. THE NUMERICAL SOLUTION SCHEME

This section is a discussion of the finite-difference technique used to

solve the partial-differential equations that describe the flowfield. The

Poisson-type equations are discretized using the standard central-difference

algorithm, and the transport-type equations are discretized using a third-

order-accurate upwind-difference scheme. The discretization of the boundary

conditions and the iterative solution of the coupled system of equations are

described.

3.1 Discretization of the Poisson-Type Equations

As given in Section 2, the Poisson equations for the velocity components

can be written in the form

-1 2 2 1 + 1 a12 +2 a 2  
0

' where * - u, v, or w.

To write Equation (37) in finite-difference form, the three-dimensional

nodal network shown in Figure 3 is introduced. Since coordinate transforma-

tions are applied to the differential equations, a nonuniform finite-

, difference grid is not required to distribute nodes in regions of large

I = maximum i index
J = maximum j index
K f maximum k index

I (ij +lk) 1 k

N (i, j, kk) I I

-lI (ij k + 1) (i + ,jk)
Y h9' NI Ni+1,j

~GPI4S74

FIgpre 3. The three-dimeunsloal finite-difference stencil.

16
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property gradients. Consequently, a uniform grid spacing h is used in each of

the transformed coordinate directions so that x = h(i - 2), y h(j - 2), and

z = h(k - 2), where i, J, and k are the respective node indices. The bound-

aries of the computational domain are the planes i 2, j - 2, k = 2, i - I,

j = J, and k = K; the planes i - 1, j - 1, k - 1, i I + 1, j - J + 1, and

k - K + 1 are exterior planes required in discretization of the transport-type

equations.

The conventional central-difference algorithm is introduced with the

derivatives centered at the interior point (i,j,k). The approximations for

the first derivatives are

i_4- llj,k - i-l,J,k (8

2h
a i,j,k

# i,j+_l,k - #i,j-lk (9

2haY i,j,k

I- i i,J,k+l - Oi,j,k-I- " -2h(40)

3z{ i,j,k

and the approximations for the second derivatives are

a2 i+lj,k - 2*1,,J,k + fi-l,j,k

Ax2 iJ k+='ih2 •k(41)

-2 2
~Xji,j,k

a2 - i,j+i,k - 2 1,J,k + i,j-l,k

2

2 i,J,k='h2(2

a2f # -i,j,k+l - 2fi,j,k + i,J,k-I

-;22 i,J,k h

When Equations (38) through (43) are substituted into Equation (37), the

discretized form of the Poisson equation is
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S1 i+l,j,k + P3 i-lj,k + P4i,j+1,k + P5ti,j-l,k + P6ti,j,k+l

+7tij,k-i + P2i,j,k P8(

The coefficients are defined by the following relations:

P a 2 + 0.Sha (45)

2

P = a1 - 0"5ha2  (46)

2

-= 2 + 0.5ho2  (47).P4 1 21

2 - 0.5ha2 (48)

P 2 + 0.5h (49)
6 - O.5hY2

P7  2 _ 0"5h (50)
7 y1  0.h 2

2 2 2

2-P8 -h2a." (52)

To solve the system of algebraic finite-difference equations, Equation

(44) is rewritten for 3 < j < J - 1 in the following form:

P4 i,j+l,k + P2ij,k + P5ij-1,k - P8 - Pli+lj,k

- P34 i-lj,k - P6ij,k+1 - P7 i,j,k- 1 (53)

Applying Equation (44) for j = 3, fi,2,k is known from the boundary value and

is transferred to the right side of the equation. Therefore,

P 4i,4,k + Pi,3,k = P8 - li+1,3,k - 3i-1,3,k - 5i,2,k

-6i,3,k+1 - P7 i,3,k-l • (54)
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Similarly, when Equation (44) is written for j J - 1, i,.,k is known from

the boundary value and is transferred to the right side of the equation.

S2 i,J-1,k + P 0i,J-2,k P8 - Pi+1,J-1,k - 3 i-I,J-l,k

- P4 i,J,k - 6i,J-l,k+l - P7i,J-l,k-i "

Equations (53) through (55) are solved using the tridiagonal algorithm,

Reference 10. Equation (53) is rewritten in the form

Psjjl + P j+ PR , (56)

where the subscript has been added to the P coefficients to indicate the J

node at which they are evaluated; the i and k subscripts have been dropped

from the unknown f values for simplicity; and Rp1 denotes the right side of

Equation (53). A recursion relation is assumed,

= qj _ b- j+ , (57)

and substitution of Equation (57) into Equation (56) yields

Rp- P51qj 1  P 4jj+1

J P Pjbj- P - P5jbj 
(58)

2j 5jiI 2j 5 -

From a comparison of Equations (57) and (58), it follows that

Rp -Pjqj_
qj (59)

P2j p5j b -1

and

b P . (60)
2j -Pb
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To initialize the solution, Equation (56) is written for j = 2,

""R2 P42

* *2 2 42 "(61)
22 p2 2

According to the recursion formula,

02 - b ,203 (62)

and it follows from a comparison of Equations (61) and (62) that

q 2 P2 (63)
qi --

!- P22

and

b 2 P4 2  (64)p22

. It follows directly from the recursion formula that

Cj , qj . (65)

The three Poisson equations for the velocity components are solved by

_ sweeping through the computational domain applying the recursion formula given

4| by Equation (58). The manner in which the solution of the Poisson-type equa-

tions is coupled to the solution of the transport-type equations is discussed

in Section 3.4.

3.2 Discretization of the Transport-Type Equations

As given in Section 2, the transport equations for the vorticity com-

ponents, the turbulent kinetic energy, and the dissipation of turbulent

kinetic energy can be written in the form

2
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2 + 2+ 2
b2 a

-2 a 2 2 + (an + t
ax a;2  3 z a2x0

+ (aB 2 + Y,8 1 ) -+ (n.T2 + %€ 1) -- o0 ' (66)
ay az

where Q = S1 fly ,z k, or c.

Equation (66) cannot be solved for an arbitrary Reynolds number using the

conventional central-difference approximations to the derivatives. The reason

for this difficulty is that the coefficients of the convective terms a,/ax,

a/y, and 30/3z contain the Reynolds number as a multiplicative factor. Con-

sequently, with the standard central-difference algorithm, the discretized

system of equations is diagonally dominant for only a limited range in

Reynolds number. Diagonal dominance is necessary to obtain convergence in the

iterative solution of the discretized system of equations.

In the present work the transport-type equations are discretized using

Agarwal's third-order-accurate upwind-difference scheme, References 11 and

12. In the application of this method, Equation (66) is rewritten in the form

A + ^3 a- -r -- r -- r = , (67)
x --2 ~2 -2 3 -2 1 - 2 - 3-aay az ax ay az

where

A1 
=  2 (68)

A2 = 2 (69)
22

A- 2 (70)

r - (, 2 + 1,al) (71)

r2 = - ( 2 + Y 0 1 ) (72)

r3- - (a¢2 + a 2 (73)
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The basis of the upwind-difference algorithm can be illustrated by considering

the term 3 A/x in Equation (67). At an interior point (i,j,k) in the nodal

network, this term is evaluated in terms of the adjacent points in the x

direction with the following truncated Taylor-series representation and stand-

ard central-difference approximation to the first derivative:

= i+1,j,k - i-1,j,k -h 2 h 4a5

ax i,j,k a2h 6 x 3  i,j,k x i,j,k

In the third-order-accurate upwind-difference scheme, the derivative 33 /ax 3

is retained and expressed in terms of one-sided difference approximations

depending on the sign of r:

32 a2o

-2 -2
3 ax ax

a - - ii- if rI > 0. (75)
a-3 h

2 20
-2 -2ax ax

3-- I i+1 i if r < 0. (76)
a-3 h 1

Using Equations (75) and (76), it follows that

- ~ = r 01+ + 3. 2 if r1 > 0 ,(77)

and

r 1 6 - - 2i)1 if r < 0 (78)
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Analogous formulas apply to the terms - r (6$/by) and - r (8/6) appearing
2 3

in Equation (67). The terms a t25x y2, and 6 2/az2and the derivatives

appearing in the coefficients and source term are discretized using the stand-

ard central-difference approximations, Equations (38) through (43).

With this approach, the following is the finite-difference form of the

transport-type equation:

Tl i+2 ,j,k + T2ti+Ijk + T3 i,j,k + T4 0_Ijk + Ts5i_2,j, k

+ T6ti,j+2,k + T7ti,j+lk + T8ti,j-l,k + Tgi,j_ 2 ,k

+ Tl0i,jk+2 + Tllti,J,k+l + TI2 tij,
k - I + TI3tiJ,k- 2

= T14 • (79)

The coefficients T1 through T13 for the two cases rI > 0, r2 > 0, r3 > 0 and

r1 < 0, r2 < o, r3 < 0 are defined in Table 1 along with the generalized form

of the coefficients used in the calculations. When Equation (79) is applied

at the second node from a boundary plane, the value of t at the boundary is

determined from the boundary condition and is transferred to the right side of

the equation. When Equation (79) is applied at the interior node adjacent to

the boundary plane, the value of t at the boundary is determined again from

the boundary condition, and the value of * at the external node adjacent to

the boundary is determined either from an image condition or extrapolation

using the techniques discussed in Section 3.3; the known values are trans-

ferred to the right side of the equation. To solve for t along a line of

variable J, Equation (79) is written in the matrix form as follows:

23
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TABLE 1. COEFFICIENTS IN THE DISCRETIZED FORM OF THE TRANSPORT EQUATION.

F1>O, F2>o, r 3>0 Ft<o, F2<o, r3<0 Generalized Form
|h h

T, 0 - I r, I - (r]-

h hT2  Al -g rl A, + hIr,1 Al + lr, -2rd

T3  -(2A, + 2A2 + 2A3  - (2A, + 2A2 + 2A3  - (2A, + 2A2 + 2A3
h h h h h h+ lr, 1+ 1lr21 + 2lr, I+ 1lr21 + ilr, l+ 1r21

h h h
+ lr31) + r3 1) +2 Ir3 1)

h hT4  A, + ht r A, - g r, A, + (r, ]+ 2r,)

Ts h r h (r, + r,)
T5h h

A6. - Ir9 r2 r (r - 1 r 1I

h h
T7 2 -r 2 A I r2- -2 (r2 r2 )

,Ts A2 + h 1 r2 I A2 - h 1 r2 A2 + h (I r2 + 2r2)

h h
A - - 1 r2+ 0 - - (r2 + rI 12)

ST0 0 h I r,1 h - ( r 3 - Ir3 1)

6 12

T Ii A3 - $ 3 A 3 + h I r3 A3 + 3 (1 r3 2r)

h h
T12  A3 + h I r3 l A3 - I I r3l A3 + (I r3 I + 2r3)

".h h

T3 6 r3, 0 -2 (r3 + r 3 1)

- 2
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T3 T7 T 6  0i,3,k RT,3,k

T8 T3 T7 T6 Ti,4,k RTi,4,k

T9 T8 T3 7 6 i,5,k RTik

T9 T8 T 3 T 7 T 6  Oi,6,k RTi,k
- 8i6,k

9 T8 3 7 6 iI -T9 98 T3 87 T6 3 i,J ,k RT ,J,k

TT9TT8TT *iJ-Ik R~Tij

Eqato (8)rpeet a syte ofsmlaeu.iereutosw a

cofiin mari of badsrcuehn a to a badwdhoaie h

s i s u S G

C a R a r w p

T9 T8 T3 T7T 6  $i,J-4,k RTi~j4 ,k

T9 T8 T3 T7 T6  ' i,J-3,k '~i,J-3,k

T9 T8 3 T7 ,-, ,_,

TTT3 iJ-2,k R~iJIk

(80)

Equation (80) represents a system of simultaneous linear equations with a

coefficient matrix of band structure having a total band width of five• The

system is solved using SUBROUTINE GELB from the McDonnell Douglas Automiat ion

Company Scientific Subroutine Package, Reference 13, a routine which performs

Gaussian elimination with column pivoting to solve the matrix problem.

The solution sequence of the transport-type equations is discussed in

Section 3.4.

3.3 Discretization of the Boundary Conditions

As discussed in Section 2.3, boundary conditions imposed in the flowfield

analysis are of either the Dirichlet or Neumann type. The discretized forms

of these boundary conditions are discussed in this section.
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On an inflow plane where the velocity and turbulence property profiles

are specified analytically, the boundary conditions given by Equation (28) are

expressed as known functions of the discretized coordinates,

ui,j,k = u(xi, %, Zk) vi,j,k v(xil, , Z ) wi,j,k - w(xi, ,Z

k i,J,k - k(x is ' zY)' and £i,J,k - (xi' t ' Z k). (81)

The vorticity profiles are computed by differentiating the analytic velocity

profiles according to Equations (29) through (31), and the resulting expres-

sions are given as functions of the discretized coordinates,

S- ax (x is t'zk), YiJk as Qy(Xi , zk)xi,J,k ,J i

and 2zi~jk u Q2 (Xi, 3, zk). (82)

On solid surfaces the velocity components and turbulent kinetic energy

are expressed in finite-difference form; for example, on the ground plane

u ~ -v -w k 0n. (83)i,2,k i,2,k i,2,k ' i,2,k

On the ground plane the turbulent dissipation follows directly from Equation

(33) using a one-sided difference formula to represent the second derivative

of the turbulent kinetic energy,

B2  (4k i  
- ki 5  - 5ki, 3 k(

L8i,2,k $12 h 5 (84)

The vorticity components on a solid surface are discretized using the

approach developed by Woods, Reference 14. Consider n evaluated on the

surface y - 0. Since v = 0 on the ground plane, Equation (29) reduces to

aw aw
S T-$-. (85)

yyx ay Biay
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It follows that fx /ay - 2 /2y or in terms of the transformed y coordinate,

-x 2 a_ (86)

ay ay y

Using a Taylor series, w at the node adjacent to the wail is represented by

the following expansion:

W + 2w h 2  (87)
Wi,3,k wi,2,k + 2 -2

ay i,2,k y i,2,k

When Equations (83), (84), and (85) are introduced, Equation (87) becomes

h2
xi,2,k + h x i,2,k (88)

w1i,3,k A,2 2 81,2 3y i,2,k 81,2

A one-sided difference formula is used to represent the vorticity derivative,

x - ,3,k h i,2k (89)
h

and Equation (88) is solved for the wall vorticity:

3 2 O
1,2 i,3,k - 81,2 fx h

Q 2 i,3,k , (90)
xi,2,k 82 h - 2 2

1,2 - 2,2 ,

On the ground plane

Yi,2,k 0 (91)
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and

2 3 ui + a2h
2 81,2 i,3,k 81,2 iz  (

Q" (92)

i , 22k h2  2  h
k2,2  1 ,2

On outflow and symmetry planes where the normal gradients vanish, the

derivatives expressed by Equations (34) through (36) are represented in

discrete form using a one-sided finite-difference formula. For example,

consider the condition 3$/ax = 0 evaluated on the plane x = 0 (i = 2):

4,3,j,k - 4,jk - 3  J2,,kS2 k2h 3. (93)

12,j,k

which results in the boundary value of * being given by

4 1
02,j,k = 3 3,j,k - 3 '4,j,k (94)

In the solution of the transport-type equations, values of the flow

properties are required on planes external to the boundaries of the compu-

tational domain and spaced a distance h from the latter. If the gradient of

the flow property vanishes on the computational boundary, the external plane

is an image plane and the value of the property is determined by the vanishing

gradient. For example, at the surface x - 0 (i = 2),

1,jk 2h 3,jk 0 , (95)

ax 2,j,k

and

,Jk = 3,j,k " (96)

. If the gradient does not vanish, the flow property on the external plane is
evaluated from a quadratic extrapolation formula. For example,

4

.1,j,k 3 2,j,k - 3,j,k + 4,j,k
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In discretization of the boundary conditions, special attention had to be

given to evaluating velocity components normal to the outflow boundaries.

Through the use of the coordinate transformations, the boundary conditions on

the outflow surfaces are specified in the far field. The level of the normal

velocity component is not specified; rather, its normal derivative is set to

zero, and the level of the velocity is computed as part of the solution. It

was found that following the achievement of a convergent flowfield, an inte-

gral mass balance performed on the computational domain failed to satisfy con-

tinuity within an acceptable tolerance. Consequently, a technique was devised

to modify the normal velocity component on each outflow plane in the manner

described below.

The mass flow rate across each boundary of the solution domain is com-

puted using trapezoidal integration. For example, on the plane x L L, the

normalized mass flow rate is given by

L = Io j o lul Cs dy
s~Y1

0 0

(u > 0, cos e 1; u < 0, cos e - - 1). (98)

A ratio is then formed of the net flow into the computational domain to the

net flow from the computational domain, and the normal velocity component

computed from the formula given by Equation (94) is multiplied by the ratio

every 10 iterations in the solution cycle. As the flow-variable residuals

decline, the mass flow rate approaches unity and the net mass flow rate

reduces to 10- 15 .

Specific boundary conditions for the flow configurations considered are

defined in Section 4.

3.4 Solution of the Coupled System of Equations

The sequence in which the solution of the Poisson- and transport-type

equations is carried out is illustrated in Figure 4. Initial distributions

are established for all flow properties. The Poisson equations are solved for

the velocity components using the tridiagonal algorithm and alternating-

direction line iteration in which the values of the velocity components are

updated according to the formula
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. . ... -. - -.,

Initialize solution

U
Solve
Poisson

V equations
for velocity

12Yequations
~for vorticitycomponents

w

Update boundary conditions:ax

It Solve transport

equations for
S turbulencer quantities

Update boundary conditions

Converged No (continue iteration)
solution?

Yes

Compute pressure field
and print output

. GP21.4U54

Figure 4. Computing sequence used In the solution of the flowfield equations.

30

: I



n+1 n-i +R (n n- 1\(9
i,j,k = Oi,j,k 

+ R fi,j,k - i,j,k 
(

where n is the iteration counter and R is the relaxation factor, which has a

value of 1.2 for the Poisson equations. The transport-type equations are

solved for the vorticity components and turbulence quantities using the penta-

diagonal algorithm (GELB) and alternating-direction line iteration in which

the properties are updated according to Equation (99) with R ranging from 0.2

to 0.8 depending upon the jet configi-ration. As soon as a flow variable has

been recomputed, the associated boundary conditions are re-evaluated. Con-

vergence is considered to have been achieved when the root-mean-square resi-

dual for each variable,

r= i - ¢i,,k)/h .(100)

has reached a specified level (I0- 4 to 10- 6 depending upon the magnitude of

the unknown).

The flowfield calculations in the present work were done using the CDC

7600 computer of the Systems Technology Program - System Simulation Center

operated by the McDonnell Douglas Astronautics Company, Huntington Beach, for

the Department of the Army.

Flowfields were computed for isolated and interacting jets. The maximum

Reynolds number for which convergent solutions could be achieved was on the

order of 102 using the finest finite-difference grid permitted by the avail-

able storage capacity of the CDC 7600. Each of these solutions required

approximately I h of machine computation time. Definitions of the flow con-

figurations and comparisons of the calculated properties with data are

presented in the next section.
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4. THE COMPUTED FLOWFIELDS

Under the present contract, turbulent flowfields were calculated for

* isolated and interacting jets in ground effect. For the single jet, both

* normal and inclined impingement were considered, and for the two jets, both

equal and unequal nozzle diameters were considered. In this section, calcu-

lated flow variables are presented for these configurations (as well as for a

laminar-flow test problem), and comparisons are made between computed and

measured properties.

4.1 Laminar Channel Flow

In order to establish the accuracy of the numerical algorithm for solu-

tion of the Navier-Stokes equations, laminar flow in a channel was computed as

4 one of the standard problems considered in evaluation of any new finite-

difference method. A quarter-section of the channel is shown in Figure 5(a),

where the half-width is denoted by W, the half-height by H, and the length by

L. Since the entering flow is taken to be symmetric with respect to the

channel midplanes y - 0 and z = 0, only a quarter section of the passage need

be computed. In this problem, the aspect ratio of the channel is unity (W

H) and L is equal to 20W. Normaliring by the channel width 2W, the dimensions

* of the physical solution domain in the x, y, and z directions are 10.0, 0.5,

and 0.5, respectively.

For this problem, a coordinate transformation is used in the x direction

only, where the computational coordinate ; (normalized by the channel width)

is related to the physical x by the following expression:

4
X 2.2x (100)

l+x
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(a) Computational domain
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Figure 5. Velocity profiles for lamninar channel flow (Re =75).
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*Values of x for uniform increments of x are tabulated below.

Xx x

0. 0. 1.1 1.0000
0.1 0.0476 1.2 1.2000
0.2 0.1000 1.3 1.4444
0.3 0.1579 1.4 1.7500
0.4 0.2222 1.5 2.1429
0.5 0.2941 1.6 2.6667
0.6 0.3750 1.7 3.4000
0.7 0.4667 1.8 4.5000
0.8 0.5714 1.9 6.3333
0.9 0.6923 2.0 10.0000
1.0 0.8333

Thus, the dimensions of the computational domain in the x, y, and z

directions, respectively, are 2.0 x 0.5 x 0.5.

The boundary conditions for the velocity components are given in Figure

5(a). At the entrance plane to the channel, it is assumed that the flow is in

the x direction only. Symmetry conditions are imposed on the planes y - 0 and

z - 0, and the no-slip, impermeable-wall constraints are enforced at the solid

surfaces x = W and y = H. At the outflow plane, the velocity components are

taken to be invariant with x (fully developed flow).

The three-dimensional laminar channel flow was computed with Re = 75

(based on the channel width and entrance-plane velocity) using 42 grid points

*in the x direction, 12 in the y direction, and 12 in the z direction. The

centerline velocity variation with the axial coordinate is shown in Figure

5(b), and the streamwise velocity profiles on the midplane z = 0 for selected

*j x stations are shown in Figure 5(c). The slight difference between the

numerical value of the fully developed centerline velocity and that determined

analytically is attributed to -he relative coarseness of the mesh, as is the

*small disparity betweeti the numerical streamwise velocity profile for x = 0.57

and the data of Goldstein and Kreid, Reference 15. Two contour plots of the

x-component of velocity are shown in Figure 5(d) which demonstrate the

acceleration of the central core as the boundary layers develop on the

confining twalls.

4.2 Turbulent Isolated Jet-Impingement Flow

4 The first turbulent jet-impingement flow considered is that for an iso-

lated nozzle with a free upper boundary and its axis perpendicular to the
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ground, as illustrated in Figure 1(a) in planar view. The flowfield is estab-

lished with specification of the nozzle height above ground, the velocity and

turbulence profiles at the nozzle exit plane, and the Reynolds number based on

the nozzle exit conditions.

In order to take advantage of symmetry, only a quarter of the jet flow-

field is computed, as illustrated in Figure 6(a). The top of the computa-

tional domain is not at the nozzle exit plane but rather is located a

distance E above the ground. The solution domain extends a distance L in the

x direction and a distance W in the z direction. In this problem the width

and depth are taken to be equal (L W), and the dimensions of the physical

domain normalized by the jet nozzle diameter are chosen to be L = 2.0, T -

1.5, and W - 2.0.

Coordinate transformations are used in both the x and z directions, where

the computational coordinates x and z (normalized by the nozzle diameter) are

expressed in terms of the physical coordinates through the following

relations:

2.25x (102)I l+x

- 2.25zz 2.5z (103)

Values of x and z for uniform increments of x and z are listed below.

X, Z X, Z

0. 0.
0.1 0.0465
0.2 0.0976
0.3 0.1538
0.4 0.2162
0.5 0.2857
0.6 0.3636
0.7 0.4516
0.8 0.5517
0.9 0.6667
1.0 0.8000
1.1 0.9565
1.2 1.1429
1.3 1.3684
1.4 1.6471
1.5 2.0000
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The dimensions of the computational domain are 1.5 x 1.5 x 1.5 in the

x, y and z directions, respectively.

The velocity profile at the inflow plane is assumed to be fully developed

and given by the relation

v(x, h, z) = - (104)
1 + Kr2

where K is a constant for a fixed value of ' and r is the distance along the

perpendicular from points within the inflow plane to the jet centerline:

K = 0.414 (105)

(6/D)2

2  2  2 (106)

In Equation (105) 6 is the jet half-radius at a distance (H - i) below the

nozzle exit plane and is computed from the empirical relations of Giralt,

Chia, and Trass, Reference 16. Also on the inflow plane, v = w f 0, and k

and c follow from the assumed profiles given below.

k(x, Ti, z) = - 0.04v(x, K, z) (107)

c(x, h, z) = 5k(x, i, z)3 /2 . (108)

On the impingement surface the velocity components and the turbulent kinetic

energy are zero, and the dissipation is determined from the reduced form of

the turbulent-kinetic-energy transport equation at the wall. The boundary

conditions follow from symmetry conditions for x = 0 and z = 0 and from the

assumption of developed flow for x - L and z = W.

The impinging-jet flowfield was computed for Re = 100 and H = 7.5 (T ;

1.5) using 17 grid points in each of the coordinate directions. Figure 6(b)

illustrates the ground-plane pressure variation normalized by the stagnation-

point pressure ps, where p. is the minimum pressure on the surface. The

computed profile, which has been reflected about the symmetry plane x = 0, is

compared with the experimental data of Snedeker and Donaldson, Reference 17,

for the same value of H but for a Reynolds number on the order of 100 000.
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(a) Computational domain (b) Ground-plane pressure variaton for z = 0
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For the same configuration, Figure 7(a), the ground-plane pressure and

jet centerline velocity as a function of distance from the stagnation point

normalized by the jet half-radius at the beginning of the impingement region

are illustrated in Figures 7(b) and 7(c), respectively, and are compared with

the experimental data of Giralt, Chia, and Trass, Reference 15. The length

scale 6 is clearly useful since it collapses the pressure and velocity

profiles to a single curve for a range of H. The ground-plane pressure

profile for z = 0 computed in the present work with Re = 100 compares

reasonably well with the experimental results, which are not strongly

dependent on Reynolds number since the surface pressure in the impingement

region is governed by the dynamics of the flow. For this reason, the inviscid

solution of Scholtz and Trass, Reference 18, which is also shown in Figure

7(b), agrees well with the data. The dimensionless centerline velocity decay

of the impinging jet is plotted in Figure 7(c) as a function of the distance

from the stagnation point normalized by the half-radius of the jet at the

beginning of the impingement region. The present solution for Re = 100

follows the experimental centerline velocity variation obtained for Reynolds

numbers of 30 000 to 80 000. However, the velocity decay computed by Scholtz

and Trass, Reference 18, using inviscid theory overpredicts the magnitude of

v. The reason for this discrepancy is that for H/D > 7.78, as is the case in

the measurements, the impinging-jet velocity decay and spreading are

*appreciably affected by turbulent free-jet entrainment and viscous effects.

For values of H/D < 7.78, the accuracy of the inviscid theory should improve,

however, since the free-jet entrainment is small in such cases and the jet

" decay and spreading during the deflection are primarily governed by the

presence of the wall.

A more complex isolated jet-impingement flow is formed when the nozzle

centerline is inclined at an angle e with respect to the ground plane. The

computational domain for this configuration is illustrated in Figure R(a). In

this case there is only a single symmeLry plane, and half the jet flowfield

must be computed. The [nflow plane is located at y = h; the outflow planes

are at x = 0, x = L, and z = 4; and the symmetry plane is at z = 0. For this

problem L = 4, h = 1.5, and W = 2.
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Figure 7. Flow properties for an isolated jet with normal Impingement.
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Figen 8. Flow propalles for an Isoled jet with inclined Impingement.
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The following coordinate transformations are used in the x and z

directions:

- 0.75x 0 4 x 4 1.5 (109)
x 3 x

3.75x - 6 1.5 < x c 3.0 (110)
x - 1 :

- 2.25z (111)
1+z

Tabulated values of x and z for uniform increments in x and z are given below.

x x x X

0. 0. 1.6 2.0465
0.1 0.3529 1.7 2.0976
0.2 0.6316 1.8 2.1538
0.3 0.8571 1.9 2.2162
0.4 1.0435 2.0 2.2857
0.5 1.2000 2.1 2.3636
0.6 1.3333 2.2 2.4516
0.7 1.4483 2.3 2.5517
0.8 1.5484 2.4 2.6667
0.9 1.6364 2.5 2.8000
1.0 1.7143 2.6 2.9565
1.1 1.7838 2.7 3.1429
1.2 1.8462 2.8 3.3684
1.3 1.9024 2.9 3.6471
1.4 1.9535 3.0 4.0000
1.5 2.0000

z z

0. 0.
0.1 0.0465
0.2 0.0976
0.3 0.1538
0.4 0.2162
0.5 0.2857
0.6 0.3636
0.7 0.4516
0.8 0.5517
0.9 0.6667
1.0 0.8000
1.1 0.9565
1.2 1.1429
1.3 1.3684
1.4 1.6471
1.5 2.0000
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* The dimensions of the computational domain in the x, y, and z directions,

• .respectively, are 3.0 x 1.5 x 1.5.

The velocity profile at the inflow plane is again assumed to be fully

developed and is given by the relation

IV(r) = (112)
I + Kr

2

In Equation (112), K is the constant defined by Equation (105) and r is the

* distance along the perpendicular from points within the inflow plane to the

jet centerline, which in this case is given by

'r 2  ]2 2
r = [(x - L/2) sin 0 - y cos 8] + z (113)

The boundary values for the velocity components are given by the relations:

u(x, h~j, z) = V(r) cos e (114)

v(x, h, z) = V(r) sin e (115)

w(x, T, z) " 0. (116)

The turbulent kinetic energy and dissipation are computed from Equations (107)

and (108). The remaining boundary conditions on the impingement surface and

" the three outflow planes are defined in Figure 8(a).

The flowfield for this configuration was computed for Re - 100 and H -

7.5 (Ti - 1.5) using 32 grid points in the x direction, 17 in the y direction,

* and 17 in the z direction. The computed impingement-plane pressure along the

line z = 0 is shown in Figure 8(b) for e = 900, 750, and 600 and compared with

the data of Snedeker and Donaldson, Reference 17, for the case of inclined

impingement. In this plot, p. is the minimum surface pressure; Ps,n is the

stagnation-point pressure for normal impingement; and x' - x - L/2. The com-

" puted variations of the stagnation-point pressure and displacement as func-

tions of the jet vector angle agree reasonably well with the data as shown in

"| Figures 8(c) and 8(d). For the same inclined-jet configuration shown in

* Figure 9(a), Figures 9(b) through 9(e) illustrate the y component of velocity

and the x component of velocity along the plane z 0 for a m 750 and 9 - 600.
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CoMutational (a) Flow geometry
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Figure 9. Flow properties for an Isolated jet with inclined impingemnent.j
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A more complicated jet-impingement flow exists when the jet discharges

through a blocking plate whicli is parallel and in proximity to the ground. In

this case the flow separates on the upper surface, and a recirculating region

must be treated in the analysis. The computational domain is illustrated in

Sigure 10(a), where a quarter of the jet is computed for normal impingement.

The spacing between the plates is denoted by H, and the plate dimensions are

WxL, where all lengths are normalized by the diameter of the entering jet.

Taking L = W, the dimensions of the physical solution domain in the x, y, and

z directions are 5.0 x 1.5 x 5.0, respectively.

For this problem, coordinate transformations are used in both the x and z

directions, where the computational coordinates x and z are expressed in

terms of the physical coordinates x and z by the following relations:

x 1 x8x (117)

I +z

Tabular values of x and z for uniform increments of the transformed

coordinates are listed below.

X, Z X, Z

0. 0.
0.1 0.0588
0.2 0.1250
0.3 0.2000
0.4 0.2857
0.5 0.3846
0.6 0.5000
0.7 0.6364
0.8 0.8000
0.9 1.0000
1.0 1.2500
1.1 1.5714
1.2 2.0000
1.3 2.6000
1.4 3.5000
1.5 5.0000

The dimensions of the computational domain are 1.5 x 1.5 x 1.5.
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The boundary conditions for the velocity and turbulence quantities are

defined in Figure 10(a). The entering jet velocity profile at the opening in

the top plate is specified according to the following relation:

v(x, H, z) -1.0 r < r (119)e

(r-r - 2 rb)2

v(x, H, z) 2 r r re r rb , (120)

- where r = (x2 + z2)1/2, rb 0.5, and r. was chosen to be 0.4 in the present

* calculations. For r > 0.5, v(x, H, z) = 0; u and w are zero along the entire

upper surface of the computational domain. Within the entering jet, k and e

are computed using Equations (107) and (108); outside the jet along the upper

plate, the turbulent kinetic energy vanishes, and the dissipation is computed

from the wall form of the k transport equation,

1 a 2  (121)
Re ay2

Symmetry conditions are applied on the planes x = 0 and z = 0, and the deriva-

*tives of all flow properties with respect to the coordinate normal to the sur-

* face are set equal to zero on the outflow planes x = L and z - W. On the

". impingement surface, the three velocity components and the turbulent kinetic

energy are set to zero, and the dissipation is evaluated using Equation (121).

The flowfield was calculated for the three-dimensional impinging jet in

the presence of a blocking plate with Re - 100 and using 17 grid points in

each coordinate direction. A streamline pattern for this configuration given

in the computational (not physical) solution domain is shown in Figure 10(b),

*! where pathlines are traced from the boundary of the entering jet. The pro-

files of the y component of velocity on the symmetry plane x - 0 are given in

*Figure 10(c) and illustrate the decay of the jet velocity as the ground is

approached. The computed ground-plane pressure on the line x - 0 is shown in

Figure 10(d) along with the data of Bradbury, Reference 19, for the normal

impingement of an axisymmetric jet in the absence of a blocking surface.
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4.3 Turbulent Interacting Jet-Impingement Flow

The jet-impingement flow of primary interest in the present study con-

sists of two jets impinging perpendicular to the ground, creating opposing

wall jets that collide to form a fountain upwash, as illustrated in Figure

1(b). Computations were made for this configuration with jets of equal and

unequal initial diameters discharging through a blocking plate. The flowfield

is established with specification of the nozzle height above ground, the

centerline spacing, the diameter ratio, the velocity and turbulence profiles

at the nozzle exit plane, and the Reynolds number based on the nozzle exit

conditions.

When the jets are of equal diameter and equal strength, the flowfield is

symmetrical with respect to the midplane of the fountain, and only half of the

flow need be computed. The computational domain and the associated boundary

conditions used in this case are the same as those shown in Figure 10(a) with

L = S/2 and the boundary condition au/ax - 0 for x - L replaced by u = 0. The

entering jet velocity profile is given by Equations (119) and (120).

However, the coordinate transformation in the x direction used for this

geometry is modified from that used for the isolated jet to provide the proper

grid resolution in the vicinity of the fountain symmetry plane. The following

transformation is used:

Ax 0 x S (122)
= Bx +-C ' el

D(SpI + Sp2 - x)

X Scl+ Sc2 E(S +S ) +2 F~T S cl x S cl Sc

(123)

where

A = Sci-Sp-2 (Sc' + Sc2 ) (124)

Sc2Spi(Spi + Sp2)

SSS -S S
B = - (125)

c25p 1 +Sp 2)
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C=1 (126)

D (127)
SSp 2(Spl +p2

S s -S S
E c2Spl clp2 (128)

S SclSp2(S p + Sp2 )

F =1 . (129)

In Equations (122) through (129), x = cl denotes the point in the com-

* putational domain where a coordinate transformation of the form given by

Equation (122) originating at x - 0 is matched to a coordinate transformation

of the same form originating at the fountain midplane c -Scl + Sc2 ) and

extending toward the junction point. The constants A through F are determined

such that their values and first two derivatives of the two transformations

are continuous at x = Scl. The line x - Scl in the computational plane

corresponds to the line x - Sp1 in the physical domain, and the line x = Sol +

S in the computational domain corresponds to the line x S Sp1 + Sp2 in the

physical domain.

For a twin-jet configuration with a centerline spacing of 6 nozzle

diameters, the following values were used in the transformation: Scl 1.5,

Sc2 f 0.5 , Spl = 2.0, and Sp2 = 1.0. The values of x as a function of x are

*. tabulated below:

x x x x

0. 0.
0.1 0.1017 1.1 1.3469
0.2 0.2069 1.2 1.5000
0.3 0.3158 1.3 1.6596
0.4 0.4286 1.4 1.8261
0.5 0.5454 1.5 2.0000
0.6 0.6667 1.6 2.1818
0.7 0.7924 1.7 2.3721
0.8 0.9231 1.8 2.5714
0.9 1.0588 1.9 2.7805
1.0 1.2000 2.0 3.0000
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The coordinate transformation given by Equation (118) is used in the z direc-

tion; no transformation is used in the y direction. The dimensions of the

physical domain are 3.0 x 3.0 x 5.0 in the x, y, and z directions, respec-

tively, and the dimensions of the computational domain are 2.0 x 3.0 x 1.5.

The flowfield was computed for this configuration (S - 6 and H - 3),

which is presented in planar view in Figure 11(a), with Re = 200 and 22 grid

points in the x direction, 32 in the y direction, and 17 in the z direction.

The jet centerline variations of the velocity and turbulent kinetic energy are

illustrated in Figure 11(b), and contour plots of the x and y components of

velocity are shown for the planes z - 0 and z = 0.5 in Figures 11(c) through

11(f). In these plots x' - x - S/2. The ground-plane pressure distribution

along the line z - 0 is shown in Figure 12(a), where the computed profile has

been reflected about the fountain symmetry plane and compared with the data of

Jenkins and Hill, Reference 20, for the same configuration in the absence of a

blocking plate. The calculations provide good correlation with data in the

impingement zone where the pressure gradient is associated with the deflection

of the jet by the ground plane and is not significantly influenced by viscous

effects. However, in the fountain region, viscous effects determine the level

of the pressure recovery. (In an inviscid analysis of the present problem,

the pressure would be unity at the fountain midline x' - 0, y - 0 since it is

a stagnation line.) For the relatively low Reynolds number in the calcula-

tions, diffusive effects are large and, as illustrated in Figure 12(b), the

opposing wall jets rapidly lose momentum such that the computed pressure

increase in the vicinity of the fountain is smaller than the measured increase

given in Reference 20, which corresponds to a Reynolds number on the order of

100 000. Calculations were first made with Re - 100, and there was no appre-

ciable ground-plane pressure increase in the fountain. This solution was

taken to initiate the solution for Re - 200, and using the latter, a solution

for Re = 300 was attempted; however, a convergent solution could not he

achieved for the highest Reynolds nuber.

The flowfield for equal-strength jets with S/D = 12 and H/D = 4 was com-

puted using the x-coordinate transformation given by Equations (122) and (123)

with Scl M 2.2, Sc2 . 0.8, Sp, - 4.0, and Sp2 - 2.0. The values of the

transformed and physical coordinates are listed below.
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(b) Centerline vtriation of y component
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| Figlure 11. Flow properties for equal-strength jets with normal impingement (S/D 6.

SH/D 3, Re =200).
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(a) Ground-pbae pressure variadon for z - 0
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FIgure 12. Flow properties for equalstrength Jets with momal implogement (S/D i6,
H/D I 3, Re 2 0).
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0. 0. 1.6 2.7234
0.1 0.1468 1.7 2.9247
0.2 0.2963 1.8 3.1304
0.3 0.4486 1.9 3.3407
0.4 0.6038 2.0 3.5556
0.5 0.7619 2.1 3.7753
0.6 0.9231 2.2 4.0000

0.7 1.0874 2.3 4.2299
0.8 1.2549 2.4 4.4651
0.9 1.4257 2.5 4.7059
1.0 1.6000 2.6 4.9524
1.1 1.7778 2.7 5.2048
1.2 1.9592 2.8 5.4634
1.3 2.1443 2.9 5.7284
1.4 2.3333 3.0 6.0000
1.5 2.5263

As in the previous case, the coordinate transformation given in Equation (118)

is used for z, and no transformation is used for y. The dimensions of the

physical domain in the x, y, and z directions, respectively, are 6.0 x 4.0 x

5.0, and the dimensions of the computational domain are 3.0 x 4.0 x 1.5 with

32, 42, and 17 nodes taken to establish the finite-difference grid. The flow-

field was calculated for this case with Re - 100, and the ground-plane pres-

sure distribution and x-component-of-velocity profiles for z - 0 are shown in

Figures 13(a) and (b).

When the primary jets are of unequal diameter and unequal strength as

they discharge through the blocking surface, the computational domain used to

* calculate the flowfield is shown in Figure 14. It is bounded by the three jet

* symmetry planes (x = 0, x = S, and z - 0), the outflow plane (z = W), and the

* two solid surfaces (y - 0 and y - H). For each of the jets, the entering

velocity profile is evaluated using Equations (119) and (120).

The coordinate transformation defined by Equations (122) through (129) is

used in the region 0 < x 4 S/2 (Sci f 1.5, Sc2 m 0.5, Sp= - 2.0, and Sp2=

1.0) and is reflected about the midplane of the computational domain for S/2 <

x < S. The values of x as a function of x are tabulated below.

52



(a) Ground-plane pressure variation for z 0
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Figure 13. Flow propetnies for equal-trength jets with normal lmplmgemoul (S/D -12,

H/D -4, Re- 10W).
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X X X X

0. 0. 2.1 3.2195
0.1 0.1017 2.2 3.4286
0.2 0.2069 2.3 3.6279
0.3 0.3158 2.4 3.8182
0.4 0.4286 2.5 4.0000
0.5 0.5455 2.6 4.1739
0.6 0.6667 2.7 4.3404
0.7 0.7924 2.8 4.5000
0.8 0.9231 2.9 4.6531
0.9 1.0588 3.0 4.8000
1.0 1.2000 3.1 4.9412
1.1 1.3469 3.2 5.0769
1.2 1.5000 3.3 5.2075
1.3 1.6596 3.4 5.3333
1.4 1.8261 3.5 5.4545
1.5 2.0000 3.6 5.5714
1.6 2.1818 3.7 5.6842
1.7 2.3721 3.8 5.7931
1.8 2.5714 3.9 5.8983
1.9 2.7805 4.0 6.0000
2.0 3.0000

The coordinate transformation given in Equation (118) is used in the z

direction, and no transformation is used in the y direction. The dimensions

of the computational domain are 4.0 x 2.0 x 1.5, with 42, 22, and 17 grid

points used in the x, y, and z directions, respectively.

Two flowfields were calculated for the case of two unequal-diameter jets

with normal impingement. In both cases S/D1 - 6, H/D1 - 2, and Re - 100,

where the Reynolds number is based on the exit-plane properties of jet 1. In

the first configuiration d2/dI - 0.75 (with rel - 0.4, rbl - 0.5, re2 - 0.3,

and rb2 - 0.375 in the entering jet velocity profiles), and in the second

configuration d2/d1 - 0.515 (rel m 0.4, rbl - 0.5, re2 - 0.206, and rb2

0.2575). The ground-plane pressure profiles and x-component-of-velocity

profiles for z - 0 are shown for these two cases in Figures 15 and 16, along

with the pressure data measured by Jenkins and Hill, Reference 20, for the

same configuration in the absence of a blocking plate with a Reynolds number

on the order of 100 000. Again, the flowfield model provides the observed

pressure distribution in the impingement zones but fails to provide the

measured pressure variation in the fountain because of the diffusion effects

for Re 1 100.

55

. . . . . ."... :" " - 0 -.-.-. .• . . .. . . . ... ... . .
.- . .



(a) Ground-plame pressure variation for z - 0
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Figure 15. Flow properties for unequal-slrength jets with normal impingement (S/D - 6,
H/D - 3, D2 /D I - 0.75, Re - 100).
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(a) Ground-pbs.e pressure variation for a 0
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Figure 16. Flow properties for unequal-strength jets with normal Impingement (S/Dj -6,
H/Dj 3 132 D/13 O .51, Re -100).
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5. SUMMARY

Using the complete elliptic conservation equations for incompressible,

steady, three-dimensional, viscous flow, a flowfield model has been solved

numerically for isolated impinging jets and for two interacting impinging jets

with fountain formation. The time-averaged Navier-Stokes and turbulence model

equations were written in terms of Poisson equations for the velocity compo-

nents and transport equations for the vorticity components, turbulent kinetic

energy, and turbulent dissipation. Coordinate transformations were introduced

into the system to extend the physical solution domain in the far field where

relatively simple constraints could be imposed on the flow variables as bound-

ary conditions. The Poisson equations were discretized using the conventional

central-difference algorithm, and the transport equations were discretized

using Agarwal's third-order-accurate upwind-difference scheme. The finite-

difference forms of the Poisson equations were solved with the tridiagonal

* algorithm, and the finite-difference forms of the transport-type equations

were sol~ed with a pentadiagonal matrix-inversion routine. Alternating-

" direction line iteration was used to update the variables. Three-dimensional

flowfields were computed for laminar channel flow (a test-case problem); iso-

lated, turbulent, impinging jets with normal and inclined impingement; and

interacting, turbulent, impinging jets with fountain formation.

Based on these computations, the following conclusions are made with

regard to the flowfield model and the solution scheme used in the present

work:

(I) Solution of the time-averaged Navier-Stokes equations in terms of

velocity and vorticity is more efficient than solution of the equations

in terms of scalar and vector potential functions and vorticity used in

the previous jet-impingement work, Reference 8.

* (2) The Jones-Launder two-equation turbulence model provides a better

description of the turbulence field than the Glushko one-equation model

used in the previous jet-impingement work, Reference 8, since the turbu-

lence length-scale distribution need not be specified throughout the

flowfield but rather is computed as part of the solution.
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K
(3) The coordinate transformations used to specify the far-field boundary

conditions provide a more general solution scheme since they eliminate

the need to define the boundary conditions in the near field on the basis

of empirical data, as was required in the previous jet-impingement work,

Reference 8.

(4) Agarwal's third-order-accurate upwind-difference scheme used to discre-

tize the transport-type equations requires less computing time and stor-

age than Hoffman's augmented-central-difference scheme which was used to

calculate the impinging jets described in Reference 8.

(5) The use of coarse finite-difference grids imposed by computer storage

constraints limits the Reynolds number for which convergent solutions of

the governing equations can be achieved. The surface pressure distribu-

tion computed for Re = 100 compares-well with measurements obtained at

higher Reynolds numbers in the impingement region for both isolated and

interacting jets. However, in the latter case the solutions for a

Reynolds number on the order of 100 do not provide the measured pressure

increase in the fountain for a Reynolds number on the order of 100 000

because of the relatively large diffusion effects in the low-Reynolds-

number results.

A potential approach for extending the present Navier-Stokes procedure to

higher Reynolds numbers within the storage constraints of a CDC 7600 computer

is to employ wall functions in the calculations. In the impinging-jet work

completed to date at MDRL, the governing equations have been integrated to the

wall through regions of steep velocity gradients using damping functions in

the turbulence model to provide the proper low-Reynolds-number behavior near

the solid surface. For Reynolds numbers on the order of 105, this approach

would require an extremely fine finite-difference mesh near the solid bound-

aries, with an associated penalty in increased computing time as well as in

increased storage. Using wall functions, which are described in Reference 21

for two-dimensional flows, the solutions of the time-averaged Navier-Stokes

equations and high-Reynolds-number form of the Jones-Launder turbulence model

equations are patched onto fully turbulent, local equilibrium wall-law pro-

files. With this method, damping functions are not required in the turbulence

model, and the governing equations need not be integrated all the way to the
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F* ,sail. The chief merit of this approach is that it economizes computer storage

* and time because it eliminates the need for a fine finite-difference mesh near

*the solid surface. The additional points that would he required near the

. solid boundaries without the use of wall functions can be distributed else-

wjhere in the flowfield.

Although application of the time-averaged Navier-Stokes and turbulence

model equations to three-dimensional impinging jets is a complex computational

problem, the present work has demonstrated reasonable agreement between the

calculated and experimental flow properties. The disparities between the com-

putations and measurements are not due to a deficiency in the flowfield model

but rather to the Reynolds-number limitations imposed by the storage capacity

of the CDC 7600 computer. No alternate computational method that does not

rely on extensive empirical data has been reported to date that can treat the

three-dimensional, interacting impinging jets as accurately as the method

described in the present work.
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